Dec 2004 – Google GFS paper published
July 2005 – Nutch uses MapReduce
Feb 2006 – Starts as a Lucene subproject
Apr 2007 – Yahoo! on 1000-node cluster
Jan 2008 – An Apache Top Level Project
Jul 2008 – A 4000 node test cluster
May 2009 – Hadoop sorts Petabyte in 17 hours
Design of HDFS:
HDFS is a filesystem designed for storing very large files with streaming data access patterns, running on clusters of commodity hardware.
1. Very large files:- “Very large” in this context means files that are hundreds of megabytes, gigabytes, or terabytes in size. There are Hadoop clusters running today that store petabytes of data.
2. Streaming data access:- HDFS is built around the idea that the most efficient data processing pattern is a write-once, read-many-times pattern. A dataset is typically generated or copied from source, then various analyses are performed on that dataset over time. Each analysis will involve a large proportion, if not all, of the dataset, so the time to read the whole dataset is more important than the latency in reading the first record.
3. Commodity hardware:- Hadoop doesn’t require expensive, highly reliable hardware to run on. It’s designed to run on clusters of commodity hardware (commonly available hardware available from multiple vendors) for which the chance of node failure across the cluster is high, at least for large clusters. HDFS is designed to carry on working without a noticeable interruption to the user in the face of such failure.
HDFS is not a good fit for below cases:
1. Low-latency data access
Applications that require low-latency access to data, in the tens of milliseconds
range, will not work well with HDFS. Remember, HDFS is optimized for delivering
a high throughput of data, and this may be at the expense of latency. HBase is currently a better choice for low-latency access.
2. Lots of small files
Since the namenode holds filesystem metadata in memory, the limit to the number
of files in a filesystem is governed by the amount of memory on the namenode. As
a rule of thumb, each file, directory, and block takes about 150 bytes. So, for
example, if you had one million files, each taking one block, you would need at
least 300 MB of memory. While storing millions of files is feasible, billions is beyond
the capability of current hardware.
3. Multiple writers, arbitrary file modifications
Files in HDFS may be written to by a single writer. Writes are always made at the
end of the file. There is no support for multiple writers, or for modifications at
arbitrary offsets in the file.
No comments:
Post a Comment